Data mining and the search for security: Challenges for connecting the dots and databases
نویسنده
چکیده
Data mining is emerging as one of the key features of many homeland security initiatives. Often used as a means for detecting fraud, assessing risk, and product retailing, data mining involves the use of data analysis tools to discover previously unknown, valid patterns and relationships in large data sets. In the context of homeland security, data mining is often viewed as a potential means to identify terrorist activities, such as money transfers and communications, and to identify and track individual terrorists themselves, such as through travel and immigration records. However, compared to earlier uses of data mining by government, some of the homeland security data mining applications represent a significant expansion in the quantity and scope of data to be analyzed. Three of the higher profile initiatives include the now defunct Terrorism Information Awareness (TIA) project, the recently canceled Computer-Assisted Passenger Prescreening System II (CAPPS II), and the Multistate Anti-Terrorism Information Exchange (MATRIX) pilot project. This article examines the evolving nature of data mining for homeland security purposes, the limitations of data mining, and some of the issues raised by its expanding use, including data quality, interoperability, mission creep, and privacy. Published by Elsevier Inc. 0740-624X/$ see front matter. Published by Elsevier Inc. doi:10.1016/j.giq.2004.08.006 $ The views expressed in this article are those of the author and do not necessarily reflect the position of the Library of Congress or the Congressional Research Services. * Fax: +1 202 707 0781. E-mail address: [email protected]. Government Information Quarterly 21 (2004) 461–480
منابع مشابه
Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملIntroducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملQuery Architecture Expansion in Web Using Fuzzy Multi Domain Ontology
Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Government Information Quarterly
دوره 21 شماره
صفحات -
تاریخ انتشار 2004